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Abstract

In this paper, we propose a method for image understa
ing by applying a theory of parameter-dependentconne
components developed by us in a previous work. We m
study various properties of an image at the connected c
ponent level. Using the information obtained from vario
component histograms, we can understand the structu
images in either micro-view or macro-view.

1. Introduction

Although the human brain can quite successfully deal w
image understanding, it is still unclear how to instruc
computer to perform that task with comparative succe
Any given image has certain properties or features of
own. Are we aware of all of them? If not, to what lev
can we understand the image by using a subset of its p
erties? Researchers have studied the properties of im
from various directions, such as the distribution of the g
values of pixels [1, pp. 92–94], [2, vol.1, pp. 231–23
connected components [2, vol.2, pp. 241–244], [3] a
transformations [2, vol.1, pp. 13–29], [4]. We believe th
image understanding may be thought of as a process w
is composed of three levels – pixel, component and con
understanding. At the pixel understanding level, we c
centrate on the properties of the pixels in the image.
may understand the structure of an image in very detail
may have no sense of the content of the image. At the c
tent understanding level, we concentrate on the prope
of some groups of pixels. Usually, each group of pix
represents a meaningful object. Content understandin
a complex intellectual process and this is ahigh level un-
derstanding.

In practical problems, it is not enough to understand
image only at the pixel level. We often need to understa
the content of an image. This raises the question: how
group the pixels in an image such that each group of p
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els represents an object of the image under considerat
In this paper, we shall refer to anyconnected subset[5] of
pixels of an image as aconnected componentof the image.
For any given grouping method, the pixels of an ima
may be grouped into a set of connected components. Th
we may understand the structure of the image in terms
its connected components besides its pixels. However,
an arbitrary grouping method, a connected componen
an image may not necessarily represent a meaningful
ject in the image. So, we may regard understand images
its connected components as the component understan
level or intermediate levelof image understanding.

There are many ways to group the pixels in an imag
A traditional definition for a connected component of a
image is a maximal connected subset of the pixels in
image which have the same gray value [3]. In a bina
image, the objects are usually represented by either bl
pixels or white pixels. The connected components of t
image can be easily obtained by the technique of thre
olding [2, vol. 2, pp. 61–66]. In this case, the properti
of the connected components, such as size, location,
corresponding to the properties of the objects of the i
ages. In a multi-gray-value image, an object usually co
tains pixels which have different gray values. If we lim
each connected component to have only one gray value
object might be “cut” into several pieces and each pie
belongs to a different connected component. We may o
tain the connected components of a multi-gray-value i
age by using multi-thresholding [2, vol. 2, pp. 66–68
or some other modified thresholding technique [2, vol.
pp. 68–71], [6, 7, 8, 9, 10]. In this case, the properti
of connected components usually do not correspond to
properties of the objects in the images. However, in pra
tical situations, for a comprehensive image understand
we often would like to know the relationship among th
objects, rather than among the “parts” of the objects. S
we feel that it would not be convenient in practice to co
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straint each connected component to have the same
value. Instead, it may be more useful to relax this co
dition to allow the pixels in the same component to ha
different gray values, so that each object of an image m
correspond to a connected component.

Recently, we have introduced [5] the concept of(�; Æ)-
components of gray images that takes into account both
gray values of the pixels and the differences of the gr
values of the neighboring pixels, where�, Æ are two pa-
rameters. Each(�; Æ)-component may contains the pixel
which have different gray values. We have discussed
some properties of(�; Æ)-components which may help u
to analyze and understand the structure of an image
higher level. In [5], we described an algorithm to fin
the(�; Æ)-components for a given image and the values
the parameters. The experimental results gave in [11,
have show that for some appropriate parameter values
(�; Æ)-component may represent an object of an image r
sonably well. So, the properties of the(�; Æ)-components
describes the properties of the corresponding objects of
image. Thus, we may understand the content of an im
through the properties of its(�; Æ)-components. In this pa-
per, we shall discuss how to analyze and understand
structure of an image in terms of its(�; Æ)-components.

2. Preliminaries

To make this paper self-contained, we review briefly som
definitions from our previous work [5].

A gray image� is represented by a set of points eac
of which has a certaingray valuerepresenting the inten-
sity of brightness of the point. We shall use�(p) to denote
the gray value of the point p. Although, theoretically,�(p)
could be any number, we shall take it, for convenience,
be a non-negative integer. Two points in a gray image�
are calledadjacentif they share either a vertex or an edg
Our treatment does not depend on the grid system c
sen to represent an image and the way in which the po
share vertices or edges. Instead of considering whether
points are 4-, 6- or 8-neighbors (see [3] or [13] for de
nitions), we shall simply consider here only whether tw
points are adjacent or not.

A pathbetween two pointsp0 andpn in a gray image
� is a sequence of pointsp0; p1; : : : ; pn such thatpi 2 �
andpi andpi�1 are adjacent for all1 � i � n. Given non-
negative integers� andÆ, we say that two distinct points
p, q 2 � are (�; Æ)-connectedif there exists a pathp =
p0; p1; : : : ; pn = q, such that the maximal variation of the
gray values of the points on the path is less than or eq
to �, and the maximal variation of the gray values of an
two adjacent points along the path is less than or equa
Æ. Such a path will be called an(�; Æ)-connected pathbe-
tweenp andq. A subset of� is called an(�; Æ)-connected
36
ray
-
e
ay

he
y

5]

a

f
2]
an
a-

he
ge

the

e

h

to

.
o-
ts

the
-
o

al
y
to

setif each pair of points of the subset is(�; Æ)-connected.
The definition of(�; Æ)-connectedness gives us a conv
nient tool to study the variation of gray values in an imag
By varying the parameters� andÆ, we may investigate the
diverse distribution of gray values. Given a pointp 2 �,
any maximal(�; Æ)-connected set containingp is called a
related(�; Æ)-connected component(in short,(�; Æ)-RCC)
of p, and is denoted byC�

p ; the pointp is called theseed
point of its (�; Æ)-RCCs. (By amaximal(�; Æ)-connected
set, we mean an(�; Æ)-connected setS such that there ex-
ists no other(�; Æ)-connected set which containsS prop-
erly, i.e., for any pointp0 62 C�

p , there is at least one poin
q 2 C�

p , such thatp0, q are not(�; Æ)-connected.) For a
given image, an(�; Æ)-RCC obtained by the algorithm dis-
cussed in [5] is called an(�; Æ)-component of the given
image. Thespectrumof the gray values of a set of pixels
C is defined to bemaxC � minC , whereminC , maxC
denote the minimum and the maximum of the gray valu
in C respectively.

3. Image Understanding by Connected
Components

Any digitized image has certain inherent properties whi
are somehow shown as a scene that may not always
resent a significant meaning to humans. The concep
the (�; Æ)-components is one of the inherent properties
an image. The algorithm described in [5] provides us
method to find the(�; Æ)-components for a given image an
the values of the parameters.

Histogram has been used as a primary tool to analy
the structure of images in the pixel level understandin
In the conventional rectangular grid system, any pixel h
only two distinguishable properties with respect to oth
pixels: its gray value and its location. From the gra
value-histogram of pixels, we could get only distributio
of the gray values of pixels in an image and the locatio
of each individual pixel would not help us significantly
to understand the structure of an image. However, a c
nected component is often composed of a group of pixe
It posses much richer distinguishable properties, such
size, shape, location, maximal gray value, minimal gr
value, with respect to other connected components th
a single pixel does. So, we may expect that the vario
property histograms of(�; Æ)-components could provide us
much more information about the structure of an ima
than the gray-value histogram of pixels. Besides the in
vidual properties, the(�; Æ)-components of an image with
different values of� andÆ have also statistical properties
Thus, we may study the structure of the image throu
the individual properties and the statistical properties of
(�; Æ)-components. At the component understanding lev
if we concentrate on the individual properties of each com
8
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IS&T’s 1999 PICS Conference
ponent, we understand the image in amicro-view. If we
consider also the statistical properties of the compone
we understand the image in amacro-view.

3.1. Image understanding in a micro-view

For a given� andÆ, we know that the corresponding(�; Æ)-
components of an image have some common proper
From the definition of the(�; Æ)-component [5], it follows
that the spectrum of the gray values of each componen
less than or equal to�. Although, within an(�; Æ)-componen
the difference of the gray values of any two neighbori
pixels may not be always less than or equal toÆ, and it
can be shown [5] that there is always a path between
two pixels such that the difference of the gray values b
tween any two neighbor pixels on the path is less than
equal toÆ. Since all the pixels within an(�; Æ)-component
are known, we can easily find the size and maximal, mi
mal, or average gray values of each(�; Æ)-component. Al-
though the exact size of a component may not be import
(since it depends on the scale of the image), the rela
size of the component to that of the other components
very helpful to understand the image in many cases. F
thermore, since we can trace down the boundary of e
(�; Æ)-component, so, we are able to describe the shap
each(�; Æ)-component and locate its position. Thereaft
we are able to calculate other desirable geometric featu
of each component. If we can describe the shape of a c
ponent efficiently, it will help us to understand the conte
of the image. For example, we may check if an(�; Æ)-
component is of some simple geometrical shape, such
a rectangle, a circle or a triangle. However, so far, the
is no convenient formula to represent an arbitrary sha
So, in most practical problems we have to use the en
(or somehow encoded) boundary to describe the shap
a component. Figure 1 shows a simplified example. F
ure 1-(a) is an original gray image. Figure 1-(b) contai
its five (�; Æ)-components when� = 20 andÆ = 10. The
componentC1 has the size 6947 pixels and the avera
gray value 162. The componentC2 has the size 4,335 pix-
els and the average gray value 138. Similarly, the co
ponentsC3, C4 andC5 have the sizes 2947, 851, 7502
and the average gray value 160, 142 and 181 respectiv
From these information we understand that the image
composed of five connected components in each of wh
the variation of the gray values of pixels is no more th
20 and the difference of the gray value of a neighbori
pixel is no more than 10. Also, we understand thatC1, C2

are two smaller and darker components,C5 is a bigger and
brighter component. Therefore, with the positions of t
connected components, we could have a good underst
ing of the structure of the image.
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(c)

(d)
Figure 1: (a) A gray image. (b) The(�; Æ)-components with� =

20, Æ = 10. (c) The corresponding size-histogram of (a). (d) T
corresponding average-gray-value-histogram of (a).
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3.2. Image understanding in a macro-view

To understand an image in a macro-view, we concentr
on the statistical properties of its(�; Æ)-components. The
most obvious statistic is the number of(�; Æ)-components.
We now consider various histograms of the(�; Æ)-componen
– instead of the pixels – to analyze the distributions of t
different properties of the(�; Æ)-components in an image
We shall refer to such a histogram aproperty histogram
of (�; Æ)-components. Corresponding to each property
the(�; Æ)-components, we can create a property histogra
of the (�; Æ)-components, where the X-axis represents t
values of the property and the Y-axis represents the nu
ber of the(�; Æ)-components. Thus, a point(x; y) in a
property histogram of(�; Æ)-components represents the in
formation that there arey number of(�; Æ)-components in
the image whose corresponding property has the valuex.
For example, we may create the size-histogram, max-gr
value-histogram, average-gray-value-histogram of(�; Æ)-
components. Figure 1-(c) shows the size-histogram of
(�; Æ)-components of Figure 1-(b); Figure 1-(d) shows th
average-gray-value-histogram of the(�; Æ)components of
Figure 1-(b). If the shapes of the components are limit
only to those of simple geometrical shapes (such as a re
angle, a disk), we may easily create a shape-histogram
components also. Where, the values along the X-axis m
be a code of the different shape names. From a sha
histogram, we could easily find the number of rectangle
triangles in the image (This would be specially helpful t
analyze, e. g., engineering drawings). From the vario
property histograms of(�; Æ)-components of an image, we
could analyze the distributions of the(�; Æ)-components
for corresponding properties. Thus, we could understa
the image not only at the pixel-level but also at a high
level – the(�; Æ)-component level.

Note that the(�; Æ)-components of an image depend o
the values of� andÆ. Changing the value of� or Æ, a prop-
erty histogram of(�; Æ)-components may also be change
correspondingly. Comparing the different property hi
tograms of an image for the different values of� and Æ,
we may find the variations of the(�; Æ)-components with
the values of� andÆ, and it could help us further to under
stand the structure of an image. Let� be an image,max�
andmin� be the maximal and the minimal gray value o
the image respectively, then, the spectrum of the ima
spectrum� = max� �min�. Whenspectrum� � Æ �

�, the entire image would be one(�; Æ)-component [5] –
such an(�; Æ)-component does not help us to understa
the image. So, we need to consider here only the situat
when0 � Æ � � � spectrum� [5]. If a large amount of
change in the�-, Æ-values causes a small change in a pro
erty histogram, the(�; Æ)-components are comparativel
stable on the property within the corresponding ranges
the�-, Æ-values. If a small change in the�-, Æ-values causes
70
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a big change in a property histogram, it implies that the
�-, Æ-values change the(�; Æ)-components significantly by
means of the corresponding property, and our experim
tal results show that these values are often good guide
segmentation.

LetCN�;Æ represent the number of the(�; Æ)-componen
of an image when the values of the parameters are� andÆ
respectively, and
maxCN = max0�Æ��<spectrum�fCN�;Æg
minCN = min0�Æ��<spectrum�fCN�;Æ j CN�;Æ > 1g
If maxCN is small for an image, we understand that t
sizes of many homogeneous patches of the image are
Otherwise, ifmaxCN is big for an image, then, the sizes
the most homogeneous patches of the image are small
example, from a given image whose spectrum is 193,
obtain itsCN�;Æ with different values of� andÆ as shown
in Figure 2-(b). SincemaxCN = 12 is small, we know
that the image must be composed of several big homo
neous patches, even before we actually see this image.
ure 2-(a) shows this original image which matches with o
expectation. Figure 3-(b) showsCN�;Æ for another image
whose spectrum is 71. In this case,maxCN = 168 is big,
so, the image contains many small homogeneous patc
Figure 3-(a) is the original image. From the distributio
of the(�; Æ)-components with the different values of� and
Æ shown in Figure 2-(b) or Figure 3-(b), we see that t
number of(�; Æ)-components changes a lot in some rang
of the values of� andÆ, but a few in some other ranges o
the values of� andÆ. Intuitively, we should pay more at
tention to those values of� andÆ which cause a big chang
of the number of(�; Æ)-components. Comparing Figure 2
(b) with Figure 3-(b), we know that the variation of gra
values of pixels in Figure 2-(a) is more abrupt than tha
Figure 3-(a). In a similar manner, we may analyze ot
properties of the image from its corresponding prope
histogram of the(�; Æ)-components.

4. Conclusion

In this paper, using various component histograms, we h
discussed a method to understand the structure of an im
at an intermediate level through the(�; Æ)-components, the
inter-relationships of the(�; Æ)-components, and the rela
tionships of the(�; Æ)-components with different values o
� andÆ. Combining certain pre-knowledge and inform
tion obtained from various(�; Æ)-component histograms
we could find the appropriate values of� andÆ, such that
the objects in an image could be represented by its co
sponding(�; Æ)-components reasonably well. Object e
traction and segmentation may then be done by loca
these(�; Æ)-components. Thus, using(�; Æ)-components as
a tool, we may understand an image beginning from the
termediate level to the higher level.
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(b)
igure 2: (a) A gray image. (b) TheCN�;Æs of the image in (a).
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(a)

(b)
Figure 3: (a) A chromosome image. (b) The distribution of t
(�; Æ)-components of the image in (a).
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